
For those of you that don’t know what a hickory nut is,
it is a cousin to the pecan and grows wild in my

hometown of Fayetteville, TN. A typical Tennessee hicker
nut is a bit smaller than a quarter and is contained within
a very hard outer shell. As a kid, my mother and I would
go into the woods on my grandma’s farm in search of
hicker nuts armed only with a couple of claw hammers.
Hickory nuts have to be shelled with a hammer and a rock
as the casings are too hard to crack with your hands or
teeth. We would eat the good ones we found on the spot,
then move on to the next prolific nut location once we
had rooted out all of the good nuts. The tell-tale sign of a
bad hicker nut is a small hole drilled into the shell by a
worm or other strong-mouthed insect. Our foraging would
last for hours since hickory nut meat is very small, and
every hammer smack didn’t guarantee that an edible nut
was waiting inside.

Hunting hicker nuts is very similar to wading through
Microsoft Visual C++ code. There’s lots of hard outer shell
and cracking through doesn’t always mean you’ll find
what you’re looking for. You also have to know where the
trees are. If you can’t find the trees, you can’t pick up
nuts. You can’t crack the nuts if you can’t find them. If you
do manage to find some nuts, you’d better have the
correct tools to crack them.

THE KADTRONIX USB HID
API LIBRARY

The Kadtronix USB HID API Library was initially
designed to support Visual Basic 6 and Visual C++ 6.
Later, the Kadtronix folks wrote a version that supports the
.NET version of Visual C++. Although you can still
purchase Visual Basic 6 and Visual C++ 6 from vendors on
the Internet, at the time of this writing the latest and
greatest versions of Visual Basic and Visual C++ could

only be had in Microsoft’s Visual Studio 2008 product.
(Visual Studio 2010 is supposedly due to be released in
March.) So, rather than base this month’s discussion on
the legacy Visual Basic and Visual C++ compilers, I
decided to show you how to move data between a PC
and our PIC32MX795F512L TRAINER with the compilers
contained within the Microsoft Visual Studio 2008
Standard. This is possible due to the Kadtronix Library’s
affinity for compilers that can access dynamic link libraries
(DLLs).

After a couple of days attempting to use the Visual
Studio version of Visual Basic with the Library, I found that
it and the .NET-based Visual Basic component of Visual
Studio 2008 are incompatible as they stand. Most of my
grief was created by the differences in the ways Visual
Basic 6 and the .NET Visual Basic component handle
string data. The API Library uses Visual Basic 6 string
handling methods that just don’t exist in the .NET
component of Visual Studio 2008. The Kadtronix
documentation points out that the API Library may not
support the .NET Framework in the Visual Basic
environment. I felt that I owed it to the Design Cycle
readers to put the Visual Studio version of Visual Basic to
the test myself. The Kadtronix folks were right on the
money.

The Kadtronix Library package includes a .NET DLL
(UsbHidApi_NET.dll) for Visual C++. However, I was able
to combine the Visual Studio 2008 version of Visual C++
and the standard Visual C++ Kadtronix Library DLL
(UsbHidApi.dll) to produce the HID data transfer code
that we will be discussing.

The UsbHidApi.lib file (which is included with the
Library package) is also a necessary part of the Visual C++
compilation and link process. I explicitly defined the
UsbHidApi.lib to the Visual C++ linker from within the VS
2008 configuration controls. The UsbHidApi.dll file is
embedded within the Windows/system32 directory during

GO NUTS WITH THE KADTRONIX
USB HID API LIBRARY

DESIGN
■ BY FRED EADY

CYCLETHE
ADVANCED TECHNIQUES FOR DESIGN ENGINEERS

As a kid, I knew them as “hicker nuts.”What my little Southern mouth was
trying to say was hickory nuts. If you’re a Nuts & Volts reader living in the

southeastern United States, at one time or another you have probably been
out there rooting around with the squirrels collecting hickory nuts.

February 2010 67

the installation of the Library package. Okay, now that you
know where the trees are, let’s crack some nuts.

TOPSEY TURVEY
Normally, we would discuss the microcontroller side

of things before adding the PC ingredients into the mix.
Instead, let’s start by sorting through the Microsoft hicker
nuts. The first nut we come across is the Kadtronix
UsbHidApi.lib file which contains the interface functions
and definitions that reach into the bowels of the Windows
HID service engine. This file allows us to easily manipulate
Windows’ built-in HID features without an in-depth
knowledge of Windows OS programming. As I mentioned
earlier, the UsbHidApi.lib file is supported by a DLL which
contains other important data items and functions that will
shield us from the heat of raw Windows programming.

We’ve all heard the stories about desperate firmware
thieves slithering off the packages of code-protected
microcontrollers and stealing their code by examining the
exposed silicon with a microscope. Once they had a
“photograph” of the microcontroller’s silicon layout, they
could reverse-engineer the protected functions. A like
situation exists with a .lib or .dll file. If we just absolutely
had to know how the library or DLL works, we could use
some expensive software tools to break it down and
analyze the assembler code. But who really wants to do
that? After all, obtaining the tools means nothing if you
don’t have the skills to interpret and rewrite the code. If
the would-be firmware cheat had the knowledge to
reverse-engineer the stolen assembler mnemonics, he or
she wouldn’t need to steal the code because they could
write the necessary algorithms from scratch.

Unlike that code-protected microcontroller, we have a
road map that helps us navigate the .lib and .dll
functionality of the Kadtronix Library. That road map is in
the guise of a file called UsbHidApi.h which is part of the
Kadtronix install package.

The UsbHidApi.h file contains the information we
need to be able to access the internal functionality of the
UsbHidApi.lib and UsbHidApi.dll library files. For instance,
here are the Read and Write HID library function
declarations found within UsbHidApi.h:

extern “C” int _stdcall Read(void *pBuf);
// Read from the HID device

extern “C” int _stdcall Write(void *pBuf);
// Write to the HID device

The Library also houses other types of data
declarations in the UsbHidApi.lib and UsbHidApi.dll files
which include character and integer variable definitions,
structures, and inheritable class instances.

Although we will only be addressing a single HID-class
device, the API Library has the ability to query and
identify multiple HID-class devices. Each device’s
parameters are stored in a structure called mdeviceList
which is revealed to us in UsbHidApi.h. Here’s what the
mdeviceList structure looks like:

typedef struct {
char DeviceName[50];

// Device name
char Manufacturer[50];

// Manufacturer
char SerialNumber[20];

// Serial number
unsigned int VendorID;

// Vendor ID
unsigned int ProductID;

// Product ID
int InputReportLen;

// Length of HID input report (bytes)
int OutputReportLen;

// Length of HID output report (bytes)
int Interface;

// Interface
int Collection;

// Collection
} mdeviceList;

Instead of me running my mouth about the
mdeviceList structure, let’s write some C code to fill its
variables with information we obtain from the
PIC32MX795F512L TRAINER.

THE GETLIST API CALL
If multiple HID-class devices need to be uniquely

serviced by our HID host, we must be able to identify
each of them individually. That’s where the GetList API
call comes in:

int GetList(unsigned int VendorID,
// Vendor ID to search
// (0xffff if unused)

unsigned int ProductID,
// Product ID to search
// (0xffff if unused)

char *Manufacturer,
// Manufacturer (NULL if unused)

char *SerialNum,
// Serial number to search
// (NULL if unused)

char *DeviceName,
// Device name to search
// (NULL if unused)

mdeviceList *pList,
// Caller’s array for storing
// matching device(s)

int nMaxDevices);
// Size of the caller’s array list
// (no.entries)

The GetList function is part of the class imported from
the UsbHidApi DLL called CUsbHidApi. If an attached
HID-class device is available, invoking GetList will pull its
operating parameters into a slot of the mdeviceList
structure array. Before we can invoke GetList, we need to
bring an instance of CUsbHidApi called hidDevices to life.
The name hidDevices is arbitrary:

CUsbHidApi hidDevices;

Using the mdeviceList structure outlined in the
UsbHidApi.h file as a template, we must also create an
array of structures which we will call m_DeviceList. Note
that there are only two device structures available in our
m_DeviceList[2] array. If we needed to track more than
two devices, we would simply allocate the necessary

68 February 2010

number of structure array entries. Right now, we are
limited to detecting only two devices. In reality, we only
require a single structure in our array. Our GetList call will
reside inside of the DetectDevice function. So, we’ll also
code the DetectDevice function prototype into
dcHidApidlg.h:

//declared public in dcHidApiDlg.h
mdeviceList m_DeviceList[2];
void DetectDevice(void);

The next step involves declaring the variables that the
GetList function requires. The variable declaration process
includes initialization of *pList which is loaded to point to
the array of structures we created in dcHidApiDlg.h. Every
variable declared can be traced back to its roots in the
GetList function that was imported from the
UsbHidApi.dll:

//this code is part of dcHidApiDlg.cpp
void CdcHidApiDlg::DetectDevice(void)

{
unsigned int activeDevices,
vendor_id,product_id;
char *manufacturer,*serial_num,
*device_name;
mdeviceList *pList = m_DeviceList;

Once we have declared all of the variables we need
for the GetList function, we prepare the GetList function
to get information on every HID-class device that is
available by not specifying any information in the call that
can be traced to any particular HID-class device that has
made itself available:

vendor_id = 0xFFFF;
// 0xFFFF => Any vendor ID

product_id = 0xFFFF;
// 0xFFFF =>Any product ID

serial_num = NULL;
// NULL=> Any serial number

device_name = NULL;
// NULL=> Any device name

manufacturer = NULL,
// NULL=> Any manufacturer

Upon invocation, the GetList API function will
return the number of HID-class devices that respond
to the function’s request. In addition, each device that
responds will fill a structure entry in the array of
structures in m_DeviceList which is referenced by the
pointer *pList:

activeDevices = hidDevices.GetList(
vendor_id, // Vendor ID
product_id, // Product ID
manufacturer, // Manufacturer
serial_num, // Serial number
device_name, // Device name
pList, // Device list
2); // max number of

// devices

The data that flows from a responding device to the
m_DeviceList structure originates in the TRAINER’s device
descriptor.

DESCRIPTOR REVIEW
Before we execute the GetList API function, let’s

grease the skids and take a look at what to expect in the
TRAINER’s m_DeviceList structure entry. As I mentioned
earlier, every piece of data returned to the m_DeviceList
structure will be gleaned from a PIC TRAINER descriptor
entry. The Microchip MCHPFSUSB Framework takes the
hard work out of descriptor creation.

The first element of our m_DeviceList structure is the
DeviceName which is a 50 character array. I entered the
following device name into the TRAINER descriptor file:

//Product string descriptor
ROM struct{BYTE bLength;BYTE bDscType;WORD
string[12];}sd002={
sizeof(sd002),USB_DESCRIPTOR_STRING,
{‘O’,’U’,’R’,’H’,’I’,’D’,’D’,’E’,’V’,’I’,’C’,’E’
}};

The VID entered in the descriptor can be used to
trace the manufacturer of the device. However, we can
also specify the manufacturer with a string in the device
descriptor:

//Manufacturer string descriptor
ROM struct{BYTE bLength;BYTE bDscType;WORD
string[9];}sd001={
sizeof(sd001),USB_DESCRIPTOR_STRING,
{‘M’,’i’,’c’,’r’,’o’,’c’,’h’,’i’,’p’
}};

There is no serial number entry in the descriptor.
Therefore, we should expect an empty serial number
structure entry to be returned from the TRAINER. If you
require a serial number, the header text of the
MCHPFSUSB Framework usb_descriptor.c file can be used
as a guide to adding the necessary serial number
descriptor code.

This whole process would be useless without a PID
and VID entry. So, here are the Vendor ID (VID) and
Product ID (PID) entries that I entered into the TRAINER’s
descriptor:

ROM USB_DEVICE_DESCRIPTOR device_dsc=
{

0x12, // Size of this descriptor
// in bytes

USB_DESCRIPTOR_DEVICE,
// DEVICE descriptor type

0x0200, // USB Spec Release Number
// in BCD format

0x00, // Class Code
0x00, // Subclass code
0x00, // Protocol code
USB_EP0_BUFF_SIZE,

// Max packet size for EP0,
// see usb_config.h

0x04D8, // Vendor ID
0x003F, // Product ID
0x0002, // Device release number in

// BCD format
0x01, // Manufacturer string index
0x02, // Product string index
0x00, // Device serial number string

// index
0x01 // Number of possible

// configurations
};

February 2010 69

T H E D E S I G N C Y C L E

Since I haven’t coughed up a fee for my own set of
USB IDs, I’ve taken the liberty to use the Microchip VID
coupled with a PID that is associated with the cursor-in-a-
circle demo program.

If you examine the usb_descriptors.c file in the
download package (available at www.nutsvolts.com),
you’ll find that only one interface and a default collection
are coded. Thus, don’t expect any unique collection and
interface numbers to be returned. Within the collection
descriptor area, you’ll see that the report size is set as 64
bytes. That means 65 bytes maximum are sent along
inside of a report. The 65th byte is the Report ID header
byte which resides at the beginning of the report package.

Now that we know what to look for and what to
expect, the results of our GetList API call can be viewed in
Screenshot 1.

VISUAL C++ TO
PIC32MX795F512L TRAINER

The TRAINER responded to the GetList API call and as
a result, the variable activeDevices assumed a value of
0x0001. At this point, if multiple devices responded, we
could choose the device that we wish to communicate
with from our list stored in the m_DeviceList array. Since
activeDevices is equal to 1, there is only one device we
can talk to.

To communicate with the TRAINER, we must open
the device. To do this, we use the GetList parameters
returned from the TRAINER and the Kadtronix Library
Open API function:

rc = 0;
if(activeDevices)
{

rc = hidDevices.Open(
pList->VendorID,
pList->ProductID,
pList->Manufacturer,
pList->SerialNumber,
pList->DeviceName,
TRUE); // Use non-blocking reads

}

We can use any of the Open API call
arguments to identify the device we wish to open.
Unused Open API function argument identifiers are
loaded with NULL or 0xFFFF values. In our case,
we’re using every variable that was returned to us
by the TRAINER as an identifier. The pointer *pList
is currently pointing to the first entry of the
m_DeviceList array. If we needed to look at the
second structure in m_DeviceList, we would simply
increment *pList.

I’ve put together a little application that will
communicate its status and any data we request via

a Visual C++ ListBox. Our GetList API call was successful
and the variable activeDevices is used as the key to the
Open API call. If the Open API call returns a TRUE
(0x0001), the link to the PIC32 TRAINER was successfully
opened. The code snippet that follows does all of the
talking for the Open API call:

CString csVendorID, csProductID;
CString csInputReportLen, csOutputReportLen;
CString OPENOKtxt, OPENERRtxt;
unsigned int rc;

if (rc)
{

OPENOKtxt.Format(_T(“Device Opened”));
m_DisplayWindow.InsertString(nextline++,
OPENOKtxt);
csVendorID.Format(_T(“VID = 0x%0.4X”),
pList->VendorID);
m_DisplayWindow.InsertString(nextline++,
csVendorID);
csProductID.Format(_T(“PID = 0x%0.4X”),
pList->ProductID);
m_DisplayWindow.InsertString(nextline++,
csProductID);
csInputReportLen.Format(_T(“Input Report
Length = %d”), pList->InputReportLen);
m_DisplayWindow.InsertString(nextline++,
csInputReportLen);
csOutputReportLen.Format(_T(“Output Report
Length = %d”), pList->OutputReportLen);
m_DisplayWindow.InsertString(nextline++,
csOutputReportLen);

}
else
{

OPENERRtxt.Format(_T(“Device Open
FAILED”));
m_DisplayWindow.InsertString(nextline++,
OPENERRtxt);

}

return;
}

Screenshot 2 is a result of the positive response to the
Open API function call. The Open API call did not change
the contents of the m_DeviceList array. So, we can display
the PIC32MX795F512L TRAINER GetList values with our
positive link message.

I failed to mention that I had a little HID analog-to-
digital (A-to-D) conversion routine in my pocket. So, I’m

■ SCREENSHOT 1. This is a capture of the data that
flows from the PIC32MX795F512L TRAINER into the
m_DeviceList structure entry. Note that the second
entry is available to us but not put to use.

70 February 2010

sure you’re wondering what clicking on the Read
Voltages button does. Once again, I’ll shut up and
just show you the code:

void CdcHidApiDlg::OnGetVolts()
{

char xmit_buf[100];
char recv_buf[100];
unsigned int wrc,rrc;
float raw_volts;
CString vReading;

memset(xmit_buf, 0,
sizeof(xmit_buf));
xmit_buf[1] = 0x37;
wrc = hidDevices.Write(xmit_buf);

The partial code snippet of the OnGetVolts
function creates a pair of 100 byte buffers. The
xmit_buf array is preloaded with zeros which
automatically puts our desired Report ID (0x00) in the first
report buffer slot. The Report ID is immediately followed
by a command byte of 0x37 which corresponds to a C
case statement in the download package file nv-pic32mx-
HID.c:

case 0x37: //Read POT command
{

WORD_VAL w;

if(!HIDTxHandleBusy(USBInHandle))
{

mInitPOT();
w = ReadPOT();

// Use ADC to read the
// I/O pin voltage.

ToSendDataBuffer[0] = 0x37;
// Echo back to the host

ToSendDataBuffer[1] = w.v[0];
//Measured analog voltage LSB

ToSendDataBuffer[2] = w.v[1];
//Measured analog voltage MSB

USBInHandle = HIDTxPacket
(HID_EP,(BYTE*)&ToSendDataBuffer
[0],64);

}
}
break;

The ReadPOT function is configured to use RB2 as
the analog input for the A-to-D converter. As you can see
in Schematic 1, I’ve tied the wiper of a 10K
potentiometer to the PIC32MX795F512L’s RB2 pin.
With this potentiometer configuration, the PIC32’s A-to-
D converter input will be presented with a minimum of
zero volts and a maximum of 3.3 volts. Following the A-
to-D conversion, the command byte and the raw voltage
word are returned to the host’s Visual C++ application.
The modified hardware to support Schematic 1 is lying
under the lens in Photo 1.

PIC32MX795F512L TRAINER
TO VISUAL C++

If all has gone as planned, the TRAINER received
the 0x37 command and executed the A-to-D converter

read operation against the potentiometer which is
configured as a simple voltage divider. Approximately 100
mS later, the host issues a Read API function call to the
open device which just happens to be our TRAINER.
Here’s the receive portion of the OnGetVolts function:

if (wrc == hidDevices.m_WriteSize)
{

Sleep(100);
rrc = hidDevices.Read(recv_buf);
if(rrc == hidDevices.m_ReadSize)

{
raw_volts = (float)((recv_buf[2] >> 8)&
0x00FF) + ((recv_buf[3] << 8) & 0xFF00);
vReading.Format(_T(“%2.2f
volts”),raw_volts * .003222);
m_DisplayWindow.InsertString
(nextline++, vReading);
}

}
}

T H E D E S I G N C Y C L E

■ SCREENSHOT 3. Each click returns a voltage reading.
Everything in the ListBox with the exception of the Device

Opened message is the direct result of HID report data
flowing between the host Visual C++ application and the

PIC32MX795F512L TRAINER.

February 2010 71

■ SCREENSHOT 2. Nothing fancy here. This is a simple
Visual C++ ListBox control and a couple of buttons.

The heavy lifting is being done by the Kadtronix
USB HID API Library and some user-contributed

Visual C++ event handlers.

The Report ID byte and the echoed command byte
precede the actual raw voltage data in the receive buffer.
Since the 10 bits of incoming raw voltage data is in byte
format, we need to convert the pair of voltage bytes to an
integer. In that we must do some scaling of the integer
voltage value for display in the ListBox, the integer voltage

value must be converted to a floating point value. Twisting
the potentiometer’s wiper and clicking on the Read
Voltage button produced the content contained within
Screenshot 3.

AS EASY AS RS-232
I never thought I would admit it. With the

MCHPFSUSB Framework working on the TRAINER side
and the Kadtronix Library operating within Microsoft’s
Visual C++ component of VS 2008, coding a useful HID

72 February 2010

■ PHOTO 1. This is a shot of my slightly modified
PIC32MX795F512L TRAINER. The voltage from the
potentiometer’s wiper is one of many data types that
can be transferred in a HID report. If you send a 0x80
instead of the 0x37, you’ll gain control of the LEDs
attached to RB0 and RB1.

OC

5V-EN

OC

3V3

3V3

3V3

VBUS

3V3

3V3

3V3

5V0

VBUS

3V3

3V3

3V3

VBUS

C1
100nF

5V0

R2
470

R1
4.7K

RB0

C4
100nF

C5
100nF

RB1

C7
100nF

R6 470

10K

C6
100nF

C2
100nF

R5 470
U2

TPS2041BDBVT

5

4

1

2

3

IN

EN

OUT

GND

OC

Y1
8MHz

C11

100nF

C13
4.7uF

3V3

C920pF

C3
100nF

R3
470

U1

PIC32MX795F512L

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76777879808182838485868788899091929394959697989910
0

RG15
VDD
RE5
RE6
RE7
RC1
RC2
RC3
RC4
RG6
RG7
RG8
MCLR
RG9
VSS
VDD
RA0
RE8
RE9
VBUSON/RB5
RB4
RB3
RB2
RB1
RB0

PG
EC

2/
R

B6
PG

ED
2/

R
B7

R
A9

R
A1

0
AV

D
D

AV
SS

R
B8

R
B9

R
B1

0
R

B1
1

VS
S

VD
D

R
A1

R
F1

3
R

F1
2

R
B1

2
R

B1
3

R
B1

4
R

B1
5

VS
S

VD
D

R
D

14
R

D
15

R
F4

R
F5

USBID/RF3
RF2
RF8

VBUS
VUSB

D-
D+

RA2
RA3
RA4
RA5
VDD

OSC1
OSC2

VSS
RA14
RA15

RTCC/IC1/RD8
RD9

RD10
RD11

RD0
RC13
RC14

VSS

R
D

1
R

D
2

R
D

3
R

D
12

R
D

13
R

D
4

R
D

5
R

D
6

R
D

7
VC

AP
/V

D
D

C
O

R
E

VD
D

C
1R

X/
R

F0
C

1T
X/

R
F1

R
G

1
R

G
0

R
A6

R
A7

R
E0

R
E1

R
G

14
R

G
12

R
G

13
R

E2
R

E3
R

E4

C12
4.7uF

J1

MINI-B USB RECPT

1
2
3
4
5
6

1
2
3
4
5
6

C10

10uF

R4
100K

ICSP

1
2
3
4
5
6

C820pF

VR1 TC1262-3.3

1 3

2

IN OUT

C
O

M

■ SCHEMATIC 1. As you can see, I’ve
simply placed a 10K potentiometer
across the 3.3 volt power rail and placed
the pot’s wiper at the disposal of analog
input RB2. The 5.0 volt power source can
also be easily brought under the control
of a bit embedded into a HID report.

SOURCES
MMiiccrroocchhiipp

MCHPFSUSB Framework ; PIC32MX795F512L
wwwwww..mmiiccrroocchhiipp..ccoomm

MMiiccrroossoofftt
Visual Studio 2008

wwwwww..mmiiccrroossoofftt..ccoomm

KKaaddttrroonniixx
Kadtronix USB HID API Library

wwwwww..kkaaddttrroonniixx..ccoomm

EEDDTTPP EElleeccttrroonniiccss,, IInncc..
PIC32MX795F512L TRAINER

wwwwww..eeddttpp..ccoomm

data transfer application is just as easy as coding a
similar RS-232 based program.

I couldn’t leave you without putting a second
PIC32MX795F512L TRAINER out there and trying to
contact it. So, I changed the PID to 0x0040 and
programmed a second TRAINER. You can see its second
m_DeviceList entry in Screenshot 4. Boy, does that
conjure up possibilities. I can see all of those light bulbs
illuminating over your heads.

I’ll put all of the good hicker nuts I found into the
download package. Once you ramble through the
basket of nuts, you can add host and HID-class device
programming to your Design Cycle. NV

February 2010 73

■ Fred Eady can be contacted via email at fred@edtp.com and
the EDTP Electronics website at wwwwww..eeddttpp..ccoomm.

T H E D E S I G N C Y C L E

■ SCREENSHOT 4. We can easily add and communicate
with more than one PIC32MX795F512L TRAINER by

simply increasing the number of m_DeviceList entries to
accommodate the number of uniquely identified TRAINERs.

